Атомные электрические станции. Атомные электростанции Ядерные топливные элементы

Ядерную энергию используют в теплоэнергетике, когда из ядерного топлива в реакторах получают энергию в форме тепла. Оно используется для выработки электрической энергии в атомных электростанциях (АЭС) , для энергетических установок крупных морских судов, для опреснения морской воды.

Ядерная энергетика обязана своим появлением, в первую очередь, природе открытого в 1932 году нейтрона. Нейтроны входят в состав всех атомных ядер, кроме ядра водорода. Связанные нейтроны в ядре существуют бесконечно долго. В свободном виде они недолговечны, так как или распадаются с периодом полураспада 11,7 минуты, превращаясь в протон и испуская при этом электрон и нейтрино, или быстро захватываются ядрами атомов.

Современная ядерная энергетика основана на использовании энергии, выделяющейся при делении природного изотопа урана-235 . На атомных электростанциях управляемая реакция деления ядер осуществляется в ядерном реакторе . По энергии нейтронов, производящих деление ядер, различают реакторы на тепловых и на быстрых нейтронах .

Основной агрегат атомной электростанции — ядерный реактор, схема которого показана на рис. 1. Получают энергию из ядерного топлива, а затем она передается другому рабочему телу (воде, металлической или органической жидкости, газу) в форме тепла; далее ее превращают в электричество по той же схеме, что и в обычных .

Управляют процессом, поддерживают реакцию, стабилизируют мощность, осуществляют пуск и остановку реактора с помощью специальных подвижных управляющих стержней 6 и 7 из материалов, интенсивно поглощающих тепловые нейтроны. Их приводят в движение с помощью системы управления 5 . Действия регулирующих стержней проявляются в изменение мощности потока нейтронов в активной зоне. По каналам 10 циркулирует вода, охлаждающая бетон биологической защиты

Управляющие стержни изготовлены из бора или кадмия, которые термически, радиационно и коррозионно устойчивы, механически прочны, имеют хорошие теплопередающие свойства.

Внутри массивного стального корпуса 3 находится корзина 8 с тепловыделяющими элементами 9 . Теплоноситель поступает по трубопроводу 2 , проходит через активную зону, омывает все тепловыделяющие элементы, нагревается и по трубопроводу 4 поступает в парогенератор.

Рис. 1. Ядерный реактор

Реактор размещен внутри толстого бетонного биологического защитного устройства 1 , которое защищает окружающее пространство от потока нейтронов, альфа-, бета-, гамма-излучения.

Тепловыделяющие элементы (твэлы) — главная часть реактора. В них непосредственно происходит ядерная реакция и выделяется тепло, все остальные части служат для изоляции, управления и отвода тепла. Конструктивно твэлы можно выполнить стержневыми, пластинчатыми, трубчатыми, шаровыми и т. д. Чаще всего они стержневые, длиной до 1 метра, диаметром 10 мм. Обычно их собирают из урановых таблеток или из коротких трубок и пластин. Снаружи твэлы покрыты коррозионностойкой, тонкой металлической оболочкой. На оболочку используются циркониевые, алюминиевые, магниевые сплавы, а также легированная нержавеющая сталь.

Передача тепла, выделяющегося при ядерной реакции в активной зоне реактора, к рабочему телу двигателя (турбины) энергетических установок осуществляется по одноконтурной, двухконтурной и трехконтурной схемам (рис. 2).

Рис. 2. Ядерная энергетическая установка
а – по одноконтурной схеме; б – по двухконтурной схеме; в – по трёхконтурной схеме
1 – реактор; 2, 3 – биологическая защита; 4 – регулятор давления; 5 – турбина; 6 – электрогенератор; 7 – конденсатор; 8 – насос; 9 – резервная ёмкость; 10 – регенеративный подогреватель; 11 – парогенератор; 12 – насос; 13 – промежуточный теплообменник

Каждый контур — замкнутая система. Реактор 1 (во всех тепловых схемах) размещен внутри первичной 2 и вторичной 3 биологических защит. Если АЭС построена по одноконтурной тепловой схеме, пар из реактора через регулятор давления 4 поступает в турбину 5 . Вал турбины соединен с валом электрогенератора 6 , в котором вырабатывается электрический ток. Отработавший пар поступает в конденсатор, где охлаждается и полностью конденсируется. Насос 8 направляет конденсат в регенеративный подогреватель 10 , и далее он поступает в реактор.

При двухконтурной схеме нагретый в реакторе теплоноситель поступает в парогенератор 11 , где тепло поверхностным подогревом передается теплоносителю рабочего тела (питательной воде второго контура). В водо-водяных реакторах теплоноситель в парогенераторе охлаждается примерно на 15…40 о С и далее циркуляционным насосом 12 обратно направляется в реактор.


При трехконтурной схеме теплоноситель (обычно жидкий натрий) из реактора направляется в промежуточный теплообменник 13 и оттуда циркуляционным насосом 12 возвращается в реактор. Теплоноситель во втором контуре тоже жидкий натрий. Этот контур не облучается и, следовательно, нерадиоактивен. Натрий второго контура поступает в парогенератор 11 , отдает тепло рабочему телу, а затем циркуляционным насосом отправляется обратно в промежуточный теплообменник.

Число циркуляционных контуров определяет тип реактора, применяемый теплоноситель, его ядерно-физические свойства, степень радиоактивности. Одноконтурная схема может быть использована в кипящих реакторах и в реакторах с газовым теплоносителем. Наибольшее распространение получила двухконтурная схема при использовании в качестве теплоносителя воды, газа и органических жидкостей. Трехконтурная схема применяется на АЭС с реакторами на быстрых нейтронах при использовании жидкометаллических теплоносителей (натрий, калий, сплавы натрий-калий).

Ядерным горючим могут быть уран-235, уран-233 и плутоний-232 . Сырье для получения ядерного топлива — природный уран и торий . При ядерной реакции одного грамма делящегося вещества (уран-235) освобождается энергия, эквивалентная 22×10 3 кВт × ч (19×10 6 кал). Для получения такого количества энергии необходимо сжечь 1900 кг нефти.

Уран-235 легко доступен, его энергетические запасы примерно такие же, как и органического топлива. Однако при использовании ядерного топлива с такой низкой эффективностью, как ныне, доступные урановые источники будут истощены через 50-100 лет. В то же время практически неисчерпаемы «залежи» ядерного топлива — это уран, растворенный в морской воде. В океане его в сотни раз больше, чем на суше. Стоимость получения одного килограмма двуокиси урана из морской воды около 60-80$, а в перспективе снизится до 30$, а стоимость двуокиси урана, добываемой в наиболее богатых месторождениях на суше, 10-20$. Стало быть, через некоторое время затраты на суше и «на морской воде» станут одного и того же порядка.

Стоимость ядерного топлива примерно в два раза ниже, чем ископаемых углей. На электростанциях, работающих на угле, на долю горючего падает 50-70% стоимости электроэнергии, а на АЭС — 15-30%. Современная ТЭС мощностью 2,3 млн кВт (например, Самарская ГРЭС) ежесуточно потребляет около 18 тонн угля (6 железнодорожных составов) или 12 тыс. тонн мазута (4 железнодорожных состава). Атомная же, такой же мощности, расходует в течение суток всего 11 кг ядерного горючего, а в течение года 4 тонны. Однако атомная электростанция дороже тепловой с точки зрения строительства, эксплуатации, ремонта. Например, сооружение АЭС мощностью 2 — 4 млн кВт обходится примерно на 50-100 % дороже, чем тепловой.

Уменьшить капитальные затраты на строительство АЭС возможно за счет:

  1. стандартизации и унификации оборудования;
  2. разработки компактных конструкций реакторов;
  3. совершенствования систем управления и регулирования;
  4. сокращения продолжительности остановки реактора для перегрузки топлива.

Важной характеристикой ядерных энергетических установок (ядерного реактора) является экономичность топливного цикла. Чтобы повысить экономичность топливного цикла, следует:

  • увеличить глубину выгорания ядерного топлива;
  • поднять коэффициент воспроизводства плутония.

При каждом делении ядра урана-235 освобождается 2-3 нейтрона. Из них для дальнейшей реакции используют только один, остальные теряются. Однако существует возможность использовать их для воспроизводства ядерного топлива, создавая реакторы на быстрых нейтронах. При работе реактора на быстрых нейтронах можно на 1 кг сожженного урана-235 одновременно получить примерно 1,7 кг плутония-239. Таким образом можно покрыть низкий термический КПД АЭС.

Реакторы на быстрых нейтронах в десятки раз эффективнее (в плане использования ядерного топлива) реакторов на топливных нейтронах. В них отсутствует замедлитель, применяется высокообогащенное ядерное горючее. Вылетающие из активной зоны нейтроны поглощаются не конструктивными материалами, а расположенным вокруг ураном-238 или торием-232.

В будущем основными делящимися материалами для атомных энергетических установок станут плутоний-239 и уран-233, полученных соответственно из урана-238 и тория-232 в реакторах на быстрых нейтронах. Превращение в реакторах урана -238 в плутоний-239 увеличит ресурсы ядерного топлива примерно в 100 раз, а тория-232 в уран-233 — в 200 раз.

На рис. 3 приведена схема ядерной энергетической установки на быстрых нейтронах.

Отличительными особенностями ядерной электроустановки на быстрых нейтронах являются:

  1. изменение критичности ядерного реактора осуществляется за счет отражения части нейтронов деления ядерного топлива с периферии обратно в активную зону при помощи отражателей 3 ;
  2. отражатели 3 могут поворачиваться, изменяя утечку нейтронов и, следовательно, интенсивность реакций деления;
  3. воспроизводится ядерное топливо;
  4. отвод излишней тепловой энергии от реактора осуществляется при помощи холодильника-излучателя 6 .

Рис. 3. Схема ядерной энергетической установки на быстрых нейтронах:
1 – тепловыделяющие элементы; 2 – воспроизводимое ядерное топливо; 3 – отражатели быстрых нейтронов; 4 – ядерный реактор; 5 – потребитель электроэнергии; 6 – холодильник-излучатель; 7 – преобразователь тепловой энергии в электрическую; 8 – радиационная защита.

Преобразователи тепловой энергии в электрическую

По принципу использования тепловой энергии, вырабатываемой ядерной энергетической установкой, преобразователи можно разделить на 2 класса:

  1. машинные (динамические);
  2. безмашинные (прямые преобразователи).

В машинных преобразователях с реактором обычно связывают газотурбинную установку, в которой рабочим телом может быть водород, гелий, гелий-ксеноновая смесь. Эффективность преобразования в электроэнергию тепла, подведенного непосредственно к турбогенератору, достаточно высока — КПД преобразователя η= 0,7-0,75.

Схема ядерной энергетической установки с динамическим газотурбинным (машинным) преобразователем показана на рис. 4.

Другой тип машинного преобразователя — магнитогазодинамический или магнитогидродинамический генератор (МГДГ). Схема такого генератора приведена на рис. 5. Генератор представляет собой канал прямоугольного сечения, две стенки которого выполнены из диэлектрика, а две — из электропроводящего материала. По каналам движется электропроводящее рабочее тело — жидкое или газообразное, которое пронизывается магнитным полем. Как известно, при движении проводника в магнитном поле возникает ЭДС, которая по электродам 2 передается потребителю электроэнергии 3 . Источником энергии потока рабочего тепла является тепло, выделяющееся в ядерном реакторе. Эта тепловая энергия затрачивается на перемещение зарядов в магнитном поле, т.е. превращается в кинетическую энергию токопроводящей струи, а кинетическая энергия — в электрическую.

Рис. 4. Схема ядерной энергоустановки с газотурбинным преобразователем:
1 – реактор; 2 – контур с жидкометаллическим теплоносителем; 3 – теплообменник для подвода теплоты к газу; 4 – турбина; 5 – электрогенератор; 6 – компрессор; 7 – холодильник-излучатель; 8 – контур отвода теплоты; 9 – насос циркуляционный; 10 – теплообменник для отвода теплоты; 11 – теплообменник-регенератор; 12 – контур с рабочим телом газотурбинного преобразователя.

Прямые преобразователи (безмашинные) тепловой энергии в электрическую подразделяются на:

  1. термоэлектрические;
  2. термоэмиссионные;
  3. электрохимические.

Термоэлектрические генераторы (ТЭГ) основаны на принципе Зеебека, заключающемся в том, что в замкнутой цепи, состоящей из разнородных материалов, возникает термо-ЭДС, если поддерживается разность температур в местах контакта этих материалов (рис. 6). Для получения электроэнергии целесообразно использовать полупроводниковые ТЭГ, имеющие более высокий КПД, при этом температуру горячего спая нужно доводить до 1400 К и выше.

Термоэмиссионные преобразователи (ТЭП) позволяют получать электроэнергию в результате эмиссии электронов с нагретого до высоких температур катода (рис. 7).

Рис. 5. Магнитогазодинамический генератор:
1 – магнитное поле; 2 – электроды; 3 – потребитель электроэнергии; 4 – диэлектрик; 5 – проводник; 6 – рабочее тело (газ).

Рис. 6. Схема работы термоэлектрического генератора

Рис. 7. Схема работы термоэмиссионного преобразователя

Для поддержания тока эмиссии к катоду подводится теплота Q 1 . Эмитируемые катодом электроны, преодолев вакуумный промежуток, достигают анода и поглощаются им. При «конденсации» электронов на аноде выделяется энергия, равная работе выхода электронов с противоположным знаком. Если обеспечить непрерывный подвод теплоты к катоду и отвод её от анода, то через нагрузку R потечет постоянный ток. Электронная эмиссия протекает эффективно при температурах катода выше 2200 К.

Безопасность и надежность работы АЭС

Одним из главных вопросов развития атомной энергетики является обеспечение надёжности и безопасности работы АЭС.

Радиационная безопасность обеспечивается:

  1. созданием надёжных конструкций и устройств биологической защиты персонала от облучений;
  2. очисткой воздуха и воды, выходящих из помещений АЭС за ее пределы;
  3. извлечением и надёжной локализацией радиоактивных загрязнений;
  4. повседневным дозиметрическим контролем помещений АЭС и индивидуальным дозиметрическим контролем персонала.

Помещения АЭС в зависимости от режима работы и установленного в них оборудования делятся на 3 категории:

  1. зона строгого режима;
  2. зона ограниченного режима;
  3. зона нормального режима.

В помещениях третьей категории персонал находится постоянно, эти помещения на станции радиационно безопасны.

При работе АЭС образуются твёрдые, жидкие и газообразные радиоактивные отходы. Они должны выводиться так, чтобы не создавалось загрязнения окружающей среды.

Удаляемые из помещения газы при их вентиляции могут содержать радиоактивные вещества в виде аэрозолей, радиоактивную пыль и радиоактивные газы. Вентиляция станции строится так, чтобы потоки воздуха проходили из наиболее «чистых» в «загрязненные», а перетоки в обратном направлении исключались. Во всех помещениях станции полная замена воздуха производится в течение не более одного часа.

При эксплуатации АЭС возникает проблема удаления и захоронения радиоактивных отходов. Отработавшие в реакторах твэлы выдерживают определенное время в бассейнах с водой непосредственно на АЭС, пока не произойдет стабилизация изотопов с малым временем полураспада, после чего твэлы отправляются на специальные радиохимические заводы для регенерации. Там из твэлов извлекается ядерное горючее, а радиоактивные отходы подлежат захоронению.

Новосибирский завод химконцентратов - один из ведущих мировых производителей ядерного топлива для АЭС и исследовательских реакторов России и зарубежных стран. Единственный российский производитель металлического лития и его солей. Входит в состав Топливной компании "ТВЭЛ" Госкорпорации "Росатом".

Внимание, комментарии под фото!

Несмотря на то, что в 2011 году НЗХК произвел и реализовал 70 % мирового потребления изотопа лития-7, основным видом деятельности завода является выпуск ядерного топлива для энергетических и исследовательских реакторов.
Этому виду и посвящен текущий фоторепортаж.

Крыша здания основного производственного комплекса

Цех производства твэл и ТВС для исследовательских реакторов

Участок изготовления порошка диоксида урана методом высокотемпературного пирогидролиза

Загрузка контейнеров с гексафторидом урана

Комната операторов
Отсюда идет управление процессом производства порошка диоксида урана, из которого затем изготавливают топливные таблетки.

Участок изготовления урановых таблеток
На переднем плане видны биконусы, где хранится порошок диоксида урана.
В них происходит перемешивание порошка и пластификатора, который позволяет таблетке лучше спрессоваться.

Таблетки ядерного керамического топлива
Далее они отправления в печь на отжиг.

Факел (дожигания водорода) на печи спекания таблеток
Таблетки отжигаются в печах при температуре не менее 1750 градусов в водородной восстановительной среде в течение 20 с лишним часов.

Производственно-технический контроль таблеток ядерного керамического топлива
Одна таблетка весом 4,5 г по энерговыделению эквивалентна 400 кг каменного угля, 360 куб. м газа или 350 кг нефти.

Все работы ведутся в боксах через специальные перчатки.

Разгрузка тарных мест с таблетками

Цех производства твэл и ТВС для АЭС

Автоматизированная линия изготовления твэл

Здесь происходит заполнение циркониевых трубок таблетками диоксида урана.
В итоге получаются готовые твэлы около 4 м в длину — тепловыделяющие элементы.
Из твэлов уже собирают ТВС, иначе говоря, ядерное топливо.

Перемещение готовых твэл в транспортных контейнерах
Бахилы даже на колесах.

Участок сборки ТВС
Установка нанесения лакового покрытия на твэлы

Закрепление твэлов в механизме загрузки

Изготовление каркаса - сварка каналов и дистанционирующих решёток
В этот каркас затем установят 312 твэлов.

Технический контроль каркаса

Каналы и дистанционирующие решётки

Автоматизированные стенды снаряжения пучка твэлов

Сборка пучка

Технический контроль ТВС

Твэлы с штрих-кодовой маркировкой по которой можно проследить, буквально, весь путь производства изделия.

Стенды контроля и упаковки готовых ТВС

Контроль готовых ТВС
Проверяют, чтобы расстояние между твэлами было одинаковое.

Готовая ТВС

Двухтрубные контейнеры для транспортировки ТВС
Топливо для атомных станций, произведенное в НЗХК, используется на российских АЭС, а также поставляется в Украину, в Болгарию, Китай, Индию и Иран.

Взят у gelio в НЗХК. Производство ядерного топлива для АЭС (2012)

Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите пишите мне - Аслан ([email protected] ) Лера Волкова ([email protected] ) и Саша Кукса ([email protected] ) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта http://bigpicture.ru/ и http://ikaketosdelano.ru

Подписывайтесь также на наши группы в фейсбуке, вконтакте, одноклассниках и в гугл+плюс , где будут выкладываться самое интересное из сообщества, плюс материалы, которых нет здесь и видео о том, как устроены вещи в нашем мире.

Жми на иконку и подписывайся!

Использование ядерного топлива в реакторах для производства энергии имеет рад особенностей, обусловленных физическими свойствами и характером протекающих процессов. Эти особенности определяют специфику атомной энергетики, требования к технологиям, особые условия эксплуатации, экономические показатели и влияние на окружающую среду.

В первую очередь отметим высокую теплотворную способность ядерного топлива. При сгорании (окислении), например, углерода по реакции С + О 2  СО 2 выделяется 4 эВ энергии на каждый акт взаимодействия, а образующийся оксид углерода приводит к парниковому эффекту с глобальными для планеты последствиями. При делении одного атома ядерного топлива выделяется примерно 200 МэВ энергии. Энерговыделение в этих двух процессах отличается в 50 млн. раз. В пересчете на единицу массы энерговыделения различаются в 2,5 млн. раз.

Высокая калорийность обусловливает резкое сокращение как массы, так и физических объемов ядерного топлива, необходимого для производства заданного количества энергии. Тем самым хранение и транспортировка исходного сырья (концентрата урана) и готового ядерного топлива требуют относительно малых затрат. Следствием этого является независимость размещения АЭС от районов добычи и изготовления топлива, что существенно влияет на выбор экономически выгодного размещения производительных сил. Можно говорить, что использование ядерного топлива способно поправить «несправедливость» природы в крайне неравномерном географическом распределении энергоресурсов. Устраняются трудности, связанные с сезонными климатическими условиями доставки и снабжения топливом, каковые постоянно возникают на Востоке и Крайнем Севере. Высокая энергоемкость ядерного топлива обусловливает относительно малую численность рабочих, занятых добычей, изготовлением и доставкой топлива потребителю в расчете на единицу производимой энергии по сравнению с добычей и транспортировкой органического топлива, что в конечном счете обеспечивает высокую производительность труда в ядерной энергетике.

Важной особенностью ядерного топлива является принципиальная невозможность полного его сжигания. Для эксплуатации реактора на заданной мощности в течение заданного времени загрузка топливом должна быть выше критической массы. Этот избыток дает запас реактивности, который необходим для заданного или расчетного количества разделившегося в единице объема или массы топлива, т.е. для достижения заданной глубины выгорания. После достижения этого выгорания, когда запас реактивности будет исчерпан, необходимо заменить отработавшее топливо новым. Выгруженное топливо содержит значительное количество делящихся и воспроизводящих материалов и после очистки от продуктов деления может быть возвращено в топливный цикл. Из этого следует, что ядерное топливо должно многократно циркулировать через реакторы и предприятия атомной промышленности: радиохимические заводы и заводы по изготовлению твэлов и тепловыделяющих сборок (ТВС). При рецикле (повторном использовании) урана и плутония существенно снижаются потребности в природном уране и мощностях по обогащению топлива. Отметим, что количество ядерного топлива, подлежащее переработке в топливном цикле для АЭС электрической мощность 1 ГВт, составляет 20-30 т/год для ВВЭР-1000 и примерно 50 т/год для РБМК-1000.

Требование постоянно содержать в активной зоне реактора большую массу топлива, рассчитанную на длительный срок работы для обеспечения заданного выгорания, вызывает значительные единовременные затраты на оплату первой топливной загрузки и последующих партий, подготовленных к загрузке. В этом состоит весьма существенное и принципиальное отличие условий использования ядерного топлива в энергетических установках по сравнению с органическим топливом.

Накопление радиоактивных продуктов деления в топливе при их последующем распаде после прекращения цепной реакции приводит к остаточному тепловыделению, которое убывает со временем примерно по степенному закону:

N (t ) = 0,07N [t -0,2 – (t + ) -0,2 ], (2.1)

где N - мощность реактора перед остановкой, N (t ) - мощность тепловыделения после остановки реактора,  - время работы реактора на мощности N до остановки, t - время после остановки. Из выражения (2.1) следует, что сразу после остановки тепловыделение в активной зоне составляет 7 % от номинальной мощности. Остаточное энерговыделение, активность теплоносителя и элементов активной зоны реактора, необходимость учета гипотетических аварийных ситуаций предъявляют особые требования к проектированию, сооружению и эксплуатации АЭС, системам защиты и управления реактором. Эти требования не имеют аналогии в теплоэнергетике на органическом топливе. Удовлетворение требований безопасности АЭС вызывает увеличение капитальных затрат в 1,5-2 раза по сравнению с традиционными тепловыми станциями.

2.2. Глубина выгорания - мера энерговыработки

ядерного топлива

Энергетической характеристикой любого топлива является его теплотворная способность, т.е. тепловыделение, отнесенное к единице массы. Энергетической характеристикой ядерного топлива является удельная энерговыработка - тепловая энергия, которая может быть выделена единицей массы ядерного топлива при данном изотопном составе за весь период пребывания в реакторе. Удельную энерговыработку ядерного топлива (В) принято измерять в меговатт-сутках на тонну (МВт·сут/т) или в меговатт-сутках на килограмм (МВт·сут/кг).

Выделение тепловой энергии в реакторе является результатом деления ядер и может быть выражено через количество ядер или массу разделившегося топлива, отнесенных к их общему количеству. Эта массовая единица выгорания (глубина выгорания В 1) может выть выражена в процентах, кг/т, г/кг и т.д. Величина В 1 обозначает также количество накопленных в твэлах продуктов деления. Удельная энерговыработка и глубина выгорания ядерного топлива - эквивалентные величины, имеющие различную размерность. Они являются важнейшими параметрами, характеризующими использование ядерного топлива в реакторах. Глубина выгорания оказывает большое влияние на технико-экономические показатели не только АЭС, но и всего топливного цикла.

Определим соотношение между В и В 1 для диоксида урана - топлива современных энергетических реакторов. Число ядер урана в грамме диоксида урана равно числу Авогадро, деленному на молекулярный вес: 6,022·10 23 /270 = 2,32·10 21 1/г. Энергия, выделяющаяся при одном акте деления, равна 3,2·10 -11 Дж. Число делений, необходимое для получения 1 МВт·сут (8,64·10 10 Дж), равно 2,7·10 21 . Таким образом, для получения энергии 1 МВт·сут необходимо обеспечить деление 1,16 г диоксида урана. Обозначив эту величину через k , запишем связь между энергетическими и массовыми единицами выгорания:

В 1 = k В. (2.2)

Если в тонне диоксида урана разделился 1 % атомов урана (2,32·10 25), то энерговыработка составит 2,32·10 25 /2,7·10 21 = = 8593 МВт·сут/т. Выгоранию 1 % тяжелых атомов соответствует для диоксида урана 2,44·10 20 дел/см 3 .

Если учитывать вес только урана, то k = 1,05. В этом случае выгоранию в 1 % соответствует энерговыработка урана 9520 МВт·сут/т. В дальнейших расчетах, относящихся к реакторам на тепловых нейтронах, будем принимать k = 1,05. Однако глубина выгорания не полностью определяет расход делящихся нуклидов в активной зоне реактора. Наряду с делением ядер имеет место реакция радиационного захвата и превращения делящихся нуклидов в неделящиеся. Для 235 U вероятность захвата нейтрона без деления и образования изотопа 236 U составляет примерно 0,15. Это означает потерю делящегося изотопа без выделения энергии. Для 239 Pu превращение в неделящийся изотоп 240 Pu в результате радиационного захвата имеет вероятность 0,26. Наличие конкурирующего с процессом деления радиационного захвата приводит к неэффективному увеличению расхода делящихся нуклидов. В реакторах на тепловых нейтронах при получении 1 МВт·сут тепловой энергии расходуется не 1,05 г, а 1,2-1,22 г 235 U, в том числе, 0,15-0,17 г без выделения энергии, а при выгорании 1 % энерговыработка урана составляет 8300 МВт·сут/т. Все это учитывается при расчете активной зоны и при определении необходимого обогащения топлива по делящемуся изотопу.

(ЯДЕРНЫЕ ТЕХНОЛОГИИ)
  • Первичное ядерное топливо
    (ЯДЕРНЫЕ ТЕХНОЛОГИИ)
  • (ЯДЕРНЫЕ ТЕХНОЛОГИИ)
  • Керамическое ядерное топливо.
    В настоящее время в большинстве энергетических реакторов применяется керамическое топливо на основе диоксида урана U02, которое впервые было получено в 1950 г. Это вещество обладает высокой жаропрочностью, позволяющей работать при больших температурах ядерного топлива (/Г1Л = 28500 С), химически устойчиво...
    (ЯДЕРНЫЕ ТЕХНОЛОГИИ)
  • Первичное ядерное топливо
    Уран - главный элемент атомной энергетики, используется как ядерное топливо, сырье для получения плутония и в ядерном оружии. Содержание урана в земной коре составляет 2,5-10-4 %, а суммарное количество в слое литосферы толщиной 20 км доходит до 1,3-1014 т. Минералы урана есть практически везде. Однако...
    (ЯДЕРНЫЕ ТЕХНОЛОГИИ)
  • З. Вторичные ресурсы. Отработавшее ядерное топливо
    В результате работы атомной энергетики, как и при любой другой индустриальной деятельности, образуются продукты, которые не являются целью данного производства (производство электроэнергии из ядерного топлива, используемого в ядерных реакторах). Однако отработавшее ядерное топливо, которое экологи пытаются...
    (ЯДЕРНЫЕ ТЕХНОЛОГИИ)
  • Активная зона энергетического ядерного реактора (а.з.ЭЯР) - это часть его объёма, в которой конструктивно организованы условия для осуществления непрерывной самоподдерживающейся цепной реакции деления ядерного топлива и сбалансированного отвода генерируемого в нём тепла с целью его последующего использования.

    Вдумавшись в смысл этого определения применительно к активной зо-не теплового ЭЯР, можно понять, что принципиальными компонентами такой активной зоны являются ядерное топливо, замедлитель, теплоноситель и другие конструкционные материалы Последние объективно необходимы, так как ядерное топливо и замедлитель в активной зоне и сама активная зона должны быть неподвижно зафиксированы в реакторе, представляя собой по возможности разборный технологический агрегат.

    Под ядерным топливом обычно понимается совокупность всех делящихся нуклидов в активной зоне. Большинство ис-пользуемых в энергоблоках АЭС тепловых ЭЯР в начальной стадии эксплуа-тации работают на чисто урановом топливе, но в процессе кампании в них воспроизводится существенное количество вторичного ядерного топлива - плутония-239, который сразу после его образования включается в процесс размножения нейтронов в реакторе. Поэтому топливом в таких ЭЯР в любой произвольный момент кампании надо считать совокупность трёх делящихся компонентов: 235 U, 238 U и 239 Pu. Уран-235 и плутоний-239 делятся нейтронами любых энергий реакторного спектра, а 238 U, как уже отмечалось, только быстрыми надпороговыми (с Е > 1.1 МэВ) нейтронами.

    Основной характеристикой уранового ядерного топлива является его начальное обогащение (x), под которым понимается доля (или процентное содержание) ядер урана-235 среди всех ядер урана. А поскольку на более чем 99.99% уран состоит из двух изотопов - 235 U и 238 U, то величина обогащения:
    x = N 5 /N U = N 5 /(N 5 +N 8) (4.1.1)
    В природном металлическом уране содержится приблизительно 0.71% ядер 235 U, а более 99.28% составляет 238 U. Прочие изотопы урана (233 U, 234 U, 236 U и 237 U) присутствуют в природном уране в настолько незначи-тельных количествах, что могут не приниматься во внимание.

    В реакторах АЭС используется уран, обогащенный до 1.8 ÷ 5.2%, в ре-акторах морских транспортных ядерных энергоустановок начальное обога-щение ядерного топлива составляет 20 ÷ 45%. Использование топлива низких обогащений на АЭС объясняется экономическими соображениями: технология производства обогащённого топлива сложна, энергоёмка, требует сложного и громоздкого оборудования, а потому является дорогой технологией.

    Металлический уран термически не стоек, подвержен аллотропным превращениям при относительно невысоких температурах и химически нестабилен, а потому неприемлем в качестве топлива энергетических реакторов. Поэтому уран в реакторах используется не в чисто металлическом виде, а в форме химических (или металлургических) соединений с другими химическими элементами. Эти соединения называются топливными композициями.

    Наиболее распространенные в реакторной технике топливные компози-ции:
    UO 2 , U 3 O 8 , UC, UC 2 , UN, U 3 Si, (UAl 3)Si, UBe 13 .

    Другой (другие) химический элемент топливной композиции называют разжижителем топлива. В первых двух из перечисленных топливных компо-зиций разжижителем является кислород, во вторых двух - углерод, в по-следующих соответственно азот, кремний, алюминий с кремнием и бериллий.
    Основные требования к разжижителю - те же, что и замедлителю в ре-акторе: он должен иметь высокое микросечение упругого рассеяния и воз-можно более низкое микросечение поглощения тепловых и резонансных ней-тронов.

    Наиболее распространенной топливной композицией в энергетических реакторах АЭС является диоксид урана (UO 2) , и его разжижитель - кисло-род - в полной мере отвечает всем упомянутым требованиям.

    Температура плавления диоксида (2800 o С) и его высокая термическая устойчивость позволяют иметь высокотемпературное топливо с допустимой рабочей температурой до 2200 о С.