Про гиперзвук от специалиста. Интереснейшее интервью годичной давности о гиперзвуке Гиперзвуковая скорость в километрах в час

Которое определяется следующим образом: , где u - скорость движения потока или тела, - скорость звука в среде. Звуковая скорость определяется как , где - показатель адиабаты среды (для идеального n-атомного газа, молекула которого обладает степенями свободы он равен ). Здесь - полное число степеней свободы молекулы. При этом, количество поступательных степеней свободы . Для линейной молекулы количество вращательных степеней свободы , количество колебательных степеней свободы (если есть) . Для всех других молекул , .

При движении в среде со сверхзвуковой скоростью тело обязательно создаёт за собой звуковую волну. При равномерном прямолинейном движении фронт звуковой волны имеет конусообразную форму, с вершиной в движущемся теле. Излучение звуковой волны обуславливает дополнительную потерю энергии движущимся телом (помимо потери энергии вследствие трения и прочих сил).

Аналогичные эффекты испускания волн движущимися телами характерны для всех физических явлений волновой природы, например: черенковское излучение , волна, создаваемая судами на поверхности воды.

Классификация скоростей в атмосфере

При обычных условиях в атмосфере скорость звука составляет примерно 331 /сек . Более высокие скорости иногда выражаются в числах Маха и соответствуют сверхзвуковым скоростям, при этом гиперзвуковая скорость является частью этого диапазона. НАСА определяет «быстрый» гиперзвук в диапазоне скоростей 10-25 М , где верхний предел соответствует первой космической скорости . Скорости выше считаются не гиперзвуковой скоростью, а «скоростью возврата » космических аппаратов на Землю .

Сравнение режимов

Режим Числа Маха км / /сек Общие характеристики аппарата
Дозвук <1.0 <1230 <340 Наиболее часто самолет с пропеллером или с ТВД , прямые или скошенные крылья.
Трансзвук (англ.) русск. 0.8-1.2 980-1470 270-400 Воздухозаборники и слегка стреловидные крылья, сжимаемость воздуха становится заметной.
Сверхзвук 1.0-5.0 1230-6150 340-1710 Более острые края плоскостей, хвостовое оперение цельноповоротное .
Гиперзвук 5.0-10.0 6150-12300 1710-3415 Охлаждаемый никелево-титановый корпус, небольшие крылья. (X-43)
Быстрый гиперзвук 10.0-25.0 12300-30740 3415-8465 Кремниевые плитки для теплозащиты, несущее тело аппарата вместо крыльев.
«Скорость возврата» >25.0 >30740 >8465 Аблятивный тепловой экран , нет крыльев, форма капсулы.

Сверхзвуковые Объекты

Космические корабли и их носители, а также большинство современных истребителей разгоняются до сверхзвуковых скоростей. Также было разработано несколько пассажирских сверхзвуковых самолетов - Ту-144 , Конкорд , Аерион. Скорость вылета пули большинства образцов современного огнестрельного оружия больше М1.

См. также

Примечания


Wikimedia Foundation . 2010 .

  • Электрическое напряжение
  • Число Маха

Смотреть что такое "Сверхзвуковая скорость" в других словарях:

    СВЕРХЗВУКОВАЯ СКОРОСТЬ - скорость движения среды или тела в среде, превышающая скорость звука в данной среде. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    СВЕРХЗВУКОВАЯ СКОРОСТЬ - СВЕРХЗВУКОВАЯ СКОРОСТЬ, скорость, превышающая локальную скорость звука. В сухом воздухе при температуре 0 °С эта скорость составляет 330 м/с или 1188 км/ч. Ее величина обычно выражается числом МАХА, которое представляет собой отношение скорости… … Научно-технический энциклопедический словарь

    Сверхзвуковая скорость - 1) скорость V газа, превышающая местную скорость звука a: V > a (M > 1, M Маха число). 2) С. с. полёта скорость летательного аппарата, превышающая скорость звука в невозмущенном потоке (часто за полёт со С. с. понимают полёт со скоростью,… … Энциклопедия техники

    Сверхзвуковая скорость - скорость перемещения тела (газового потока), превышающая скорость распространения звука в идентичных условиях. Характеризуется значениями Маха числа (М); имеет значения М от 1 до 5. Скорость, превышающая скорость звука более чем в 5 раз… … Морской словарь

    СВЕРХЗВУКОВАЯ СКОРОСТЬ - скорость перемещения тела (газового потока), превышающая скорость распространения звука в идентичных условиях (скорость звука в воздухе при 0°С равна 331 м/с). Характеризуется числом Маха М (), имеющим значения от 1 до 5. Скорость, превышающая М… … Большая политехническая энциклопедия

    сверхзвуковая скорость - Скорость газа, превышающая местную скорость звука, . [ГОСТ 23281 78] Тематики аэродинамика летательных аппаратов Обобщающие термины характеристики течения газа EN supersonic velocity … Справочник технического переводчика

    сверхзвуковая скорость - viršgarsinis greitis statusas T sritis Standartizacija ir metrologija apibrėžtis Skraidymo aparato greitis, viršijantis garso greitį terpėje arba aplinkoje, kurioje jis juda. atitikmenys: angl. hypersonic velocity; supersonic velocity vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    сверхзвуковая скорость - viršgarsinis greitis statusas T sritis fizika atitikmenys: angl. hypersonic velocity; supersonic velocity vok. Überschallgeschwindigkeit, f; Ultraschallgeschwindigkeit, f rus. сверхзвуковая скорость, f pranc. vitesse hypersonique, f … Fizikos terminų žodynas

    сверхзвуковая скорость - viršgarsinis greitis statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Greitis, viršijantis garso greitį. atitikmenys: angl. supersonic speed; velocity rus. сверхзвуковая скорость … Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

Мне задают вопросы про испытания новой ракеты "Авангард" с "гиперзвуковыми" (называется скорость полета в атмосфере 20-27 Махов, т.е. скоростей звука) боевыми блоками.

Скажу честно - для серьезного комментария инфы не хватает, а та, что есть - крайне противоречива. Но кое-что сказать можно.

Начну с определения понятия "гиперзвуковой". В авиации гиперзвуковой скоростью считается скорость уже 5-6 (разумеется, и более) скоростей звука для данной высоты. Почему для данной? Потому что скорость звука в воздуха зависит от его давления, а давление падает с высотой. Соответственно, на разных высотах скорость звука разная (кому интересно - погуглите стандарт МСА - международной стандартной атмосферы).

В общем случае гиперзвуковой скоростью обладает любой аппарат, летящий в атмосфере со скоростью более М>5...6
Например, спускаемый аппарат космического корабля "Союз" при возврате из космоса входит в атмосферу с первой космической скоростью (примерно М=23...24), а любая ракета-носитель, стартуя с земной поверхности и разгоняясь до первой космической скорости, тоже с какого-то момента летит на гиперзвуковой скорости (пока не выйдет за пределы атмосферы). Но - внимание! Назвать из гиперзвуковыми летательными аппаратами нельзя! И именно здесь начинается мухлеж, который мы слышим из официальных источников при бахвальстве нашим новым оружием: сначала "Кинжалом", теперь "Авангардом". Потому что не любой аппарат, летящий на гиперзвуковой скорости, является "гиперзвуковым летательным аппаратом". Например, боеголовки баллистических ракет, летающие с середины прошлого века и входящие в атмосферу на гиперзвуке, не являются гиперзвуковыми летательными аппаратами (ГЛА).

В авиации есть четкое определение ГЛА - это летательный аппарат, какое-то время осуществляющий УСТАНОВИВШИЙСЯ гиперзвуковой полет в атмосфере. Установившийся - это когда сила тяги двигателя компенсирует сопротивления воздуха (обеспечивается постоянство гиперзвуковой скорости), а сила тяжести компенсируется аэродинамической подъемной силой (постоянство высоты полета). При этом маневрирование (изменение направления полета) может обеспечиваться отклонением аэродинамических поверхностей (рулей) или изменением вектора тяги двигателя.

Двигатель может быть ракетным (жидкостным или твердотопливным) или воздушно-реактивным (например гиперзвуковым прямоточным воздушно-реактивным).

Ракетный двигатель работает очень непродолжительное время, измеряемое секундами (десятками). Поэтому аппарат с ракетным двигателем сначала набирает скорость, а потом, после выработки топлива и выключения двигателя, летит по инерции, тормозясь сопротивлением встречного потока воздуха. Именно поэтому ракета, часть времени летя со сверхзвуковой скоростью, НЕ ЯВЛЯЕТСЯ гиперзвуковым летательным аппаратом. Соответственно, "Кинжал" является аэробаллистической ракетой "Искандер" воздушного базирования, но не гиперзвуковым летательным аппаратом. Как те же "Сатана" или "Искандер".

Установившийся гиперзвуковой полет может обеспечить только гиперзвуковой воздушно-реактивный двигатель (ГПВРД), выгодно отличающийся от ракетного тем, что если для него топливо (горючее и окислитель) запасаются на борту летательного аппарата и сжигаются за десятки секунд, то у гиперзвукового аппарата с ГПВРД на борту только горючее, а окислитель (кислород) берется из окружающей атмосферы. Именно это обеспечивает на порядки более высокую эффективность (экономичность) ГПВРД, и время его работы десятки минут и более.

Суммируя сказанное: гиперзвуковой летательный аппарат - это аппарат с гиперзвуковой КРЕЙСЕРСКОЙ скоростью, выполняющий УСТАНОВИВШИЙСЯ полет на гиперзвуковой скорости, как правило - за счет гиперзвукового воздушно-реактивного двигателя. И из имеющейся информации, ни "Авангард", ни его планирующие боевые блоки не являются гиперзвуковыми летательными аппаратами, а всего лишь - маневрирующими боеголовками с увеличенным атмосферным участком полета. И судя по всему - летящими по инерции. Напомню, что первые пуски прообразов таких боевых блоков были осуществлены в СССР еще в 1960-х годах (например, "ракетопланы" МП-1 Владимира Челомея).

Что же касается собственно создания по-настоящему гиперзвуковых летательных аппаратов с ГПВРД, то это сложнейшая инженерно-техническая задача, решение которой в "Авангарде" и рядом не стоит. И насколько это вообще "по зубам" современной России - баааальшой вопрос... Это и у американцев пока не получается, а мы от них в этом плане сильно в заднице, хотя в СССР были хорошие наработки в рамках темы "Холод".

Почему "Холод"? Да потому что топливом для гиперзвуковых летательных аппаратом может быть только жидкий водород или сжиженный газ, теплоемкость которых помогает охлаждать аппарат и гиперзвуковой двигатель в полете.
Еще два момента, требующие пояснений, судя по комментам на пуск "Авангарда".

Первый - температура лобовой ("наветренной") части боевого блока в 2000 град. С при температуре во фронте ударной волны в 20000 градусов - вполне реально. Достаточно вспомнить, что "углерод-углеродные" носки на "Буране" выдерживали температуру до 1750 градусов, а с тех пор появились новые материалы (кому интересно - смотрите здесь http://www.buran.ru/htm/tersaf4.htm , ниже к посту дана картинка для плиточной теплозащиты "Бурана").

Второй - скорость полета М=27. Многие обратили внимание, что эта скорость выше первой космической, т.е. и наш "Буран", и американские шаттлы, и различные спускаемые аппараты, как и все боеголовки баллистических ракет, входят в атмосферу с более низкой скоростью. Например, для "Бурана" расчет посадочной траектории начинался с высоты 152500 метров ("официальная граница" космоса 100 км) - в этот момент он имел скорость 7578 метров секунду, что равнялось 22,82 Маха. Корабль падал, т.е. ускорялся, поэтому максимальное число Маха=27,92 достигалось на высоте 93-90 км. Это все еще космос, атмосферы почти нет. Например, скоростной напор (динамическое давление встречного потока) на этой высоте на указанной скорости 7,5 км/с составляет всего... 10 кг на квадратный (!) метр. В таких условиях говорить о "гиперзвуковом" полете на высоте 90 км может только полный идиот. Ну, или гуманитарий. Ну а по температуре уже все заметно - с начальных 27 градусов Цельсия на орбите к высоте 90 км температура успевает подняться до 1200 градусов.

Однако если говорить о максимальном нагреве (здесь важен кумулятивный эффект, да и скоростной напор нарастает быстрее темпа снижения скорости), то максимум 1656 градусов С достигается к высоте 77800 метров (скорость 7582 м/с, или М=26.69), и держится до высоты 69400 метров (скорость 6277 м/с, или М=21.05). Как видите, названные скорости М=27 вполне реальны, но установившийся полет на таком режиме при современных технологиях немыслим. Все, что мы сегодня слышим - это выхватывание дилетантами цифр из контекста.

Ну а что касается "подарка на Новый год" - сначала пенсию верни, балабол...

PS: что еще могу добавить. В середине "нулевых" годов появилась крайне интересная и сверхсекретная тема (напрягшимся компетентным товарищам могу дать ссылку на единственную открытую публикацию в журнале "Авиационная техника и технологии" НПО "Молния) - так называемые "трансатмосферные летательные аппараты". В двух словах - УСТАНОВИВШИЙСЯ полет в атмосфере на КРЕЙСЕРСКИХ скоростях ВЫШЕ первой космической скорости. Но здесь, судя по всему, абсолютно не тот случай...

PPS: и последнее (если быть точным) - в качестве определения для "гиперзвукового летательного аппарата" я использовал определение термина "гиперзвуковой самолет"


Повышение рабочих температур теплозащитных материалов

Гиперзвуковым называют летательный аппарат, способный осуществлять полёт с гиперзвуковой скоростью.

Что такое гиперзвуковая скорость

В аэродинамике часто пользуются величиной, которая показывает отношение скорости движения потока или тела к скорости звука. Это отношение называют числом Маха, по имени австрийского учёного Эрнста Маха, который заложил основы аэродинамики сверхзвуковых скоростей.

где М – число Маха;

u – скорость воздушного потока или тела,

c s – скорость распространения звука.

В атмосфере при обычных условиях скорость звука равна приблизительно 331 м/с. Скорость тела в 1 Мах соответствует скорости звука. Сверхзвуковой называют скорость в диапазоне от 1 до 5 М. Если же она превышает 5 М, то это уже гиперзвуковой диапазон. Это разделение условное, так как чёткой границы между сверхзвуковой и гиперзвуковой скоростью не существует. Так договорились считать в 70-е годы ХХ столетия.

Из истории авиации

"Зильбертфогель"

Впервые создать гиперзвуковой самолёт пытались ещё во время Второй мировой войны в нацистской Германии. Автором этого проекта, который назывался «Зильбертфогель » (серебряная птица) был австрийский учёный Ойген Зенгер. Самолёт имел и другие названия: «Amerika Bomber », «Orbital-Bomber », «Antipodal-Bomber », «Atmosphere Skipper », «Ural-Bomber ». Это был бомбардировщик-ракетоплан, который мог нести до 30 тонн бомб. Он предназначался для бомбардировки США и промышленных районов России. К счастью, в те времена на практике такой самолёт построить было невозможно, и он остался только в чертежах.

North American X-15

В 60-е годы ХХ века в США был создан первый в истории самолёт-ракетоплан Х-15, основной задачей которого было изучение условий полёта на гиперзвуковых скоростях. Этот аппарат смог преодолеть высоту 80 км. Рекордом считался полёт Джо Уокера, выполненный в 1963 г., когда была достигнута высота 107,96 км и скорость 5,58 М.

Х-15 был подвешен под крылом стратегического бомбардировщика «Б-52». На высоте 15 км он отделился от самолёта-носителя. В этот момент включился его собственный жидкостный ракетный двигатель. Он проработал 85 секунд и отключился. К этому времени скорость самолёта достигла 39 м/с. В самой высокой точке траектории (апогее) аппарат был уже за пределами атмосферы и находился в невесомости почти 4 минуты. Пилот провёл запланированные исследования, с помощью газовых рулей направил самолёт в атмосферу и вскоре приземлился. Рекорд высоты, достигнутый Х-15, продержался почти 40 лет, до 2004 г.

X-20 Dyna Soar

С 1957 по 1963 г.г. по заказу военно-воздушных сил США компанией Boeing проводились разработки пилотируемого космического перехватчика-разведчика-бомбардировщика Х-20. Программа называлась X-20 Dyna-Soar . На орбиту на высоту 160 км Х-20 должна была выводить ракета-носитель. Скорость самолёта планировалась немного ниже первой космической, чтобы он не стал спутником Земли. С высоты самолёт должен был «нырять» в атмосферу, снижаясь до 60-70 км, и проводить либо фотографирование, либо бомбометание. Затем снова поднимался, но уже на высоту, меньшую первоначальной, и снова «нырял» ещё ниже. И так до тех пор, пока не приземлялся на аэродроме.

На практике было изготовлено несколько макетов Х-20, подготовлены пилоты-астронавты. Но по ряду причин программу свернули.

Проект «Спираль»

В ответ на программу X-20 Dyna-Soar в 1960-е г.г. в СССР был начат проект «Спираль». Это была принципиально новая система. Предполагалось, что мощный самолёт-разгонщик с воздушно-реактивными двигателями, весом в 52 т и длиной 28 м, разгоняется до скорости 6 М. С его «спины» на высоте 28-30 км стартует пилотируемый орбитальный самолёт весом 10 т и длиной 8 м. Оба самолёта, взлетающие с аэродрома вместе, могли каждый в отдельности осуществлять самостоятельную посадку. Кроме того, самолёт-разгонщик с его гиперзвуковой скоростью планировали использовать ещё и как пассажирский авиалайнер.

Так как для создания такого гиперзвукового самолёта-разгонщика требовались новые технологии, то в проекте предусматривалась возможность использовать не гиперзвуковой, а сверхзвуковой самолёт.

Вся система разрабатывалась в 1966 г. в конструкторском бюро ОКБ-155 А.И. Микояна. Два варианта модели прошли полный цикл аэродинамических исследований в центральном аэродинамическом институте им. профессора Н.Е. Жуковского в 1965 – 1975 г.г. Но создать самолёт всё-таки не получилось. И эта программа, как и американская, была свёрнута.

Гиперзвуковая авиация

К началу 70-х гг. ХХ века полёты на сверхзвуковых скоростях стали обыденным явлением для военных самолётов. Появились и сверхзвуковые пассажирские самолёты. Воздушно-космические самолёты могли проходить плотные слои атмосферы с гиперзвуковыми скоростями.

В СССР работы над гиперзвуковым самолётом начались в ОКБ Туполева в середине 70-х годов. Проводилось исследование и проектирование самолёта, способного развивать скорость до 6 М (ТУ-260) с дальностью полёта до 12 000 км, а также гиперзвукового межконтинентального самолёта ТУ-360. Его дальность полёта должны была достигать 16 000 км. Был даже подготовлен проект пассажирского гиперзвукового самолёта, рассчитанного на полёт на высоте 28-32 км со скоростью 4,5 – 5 М.

Но чтобы самолёты могли летать на сверхзвуковых скоростях, их двигатели должны иметь черты и авиационной, и космической техники. Существующие воздушно-реактивные двигатели (ВРД), использовавшие атмосферный воздух, имели ограничения по температуре и могли использоваться на самолётах, скорости которых не превышали 3 М. А ракетные двигатели должны были нести большой запас топлива на борту и не годились для продолжительных полётов в атмосфере.

Оказалось, что наиболее рациональным для гиперзвукового самолёта является прямоточный воздушно- реактивный двигатель (ПВРД), в котором нет вращающихся частей, в комбинации с турбореактивным двигателем (ТРД) для разгона. Предполагалось, что для полётов с гиперзвуковыми скоростями наиболее подходит ПВРД на жидком водороде. А разгонный двигатель - это ТРД на керосине или жидком водороде.

Впервые прямоточным воздушно - реактивным двигателем был оснащён беспилотный аппарат Х-43А, который, в свою очередь, был установлен на крылатой ракете-носителе «Pegasus».

29 марта 2004 г. в Калифорнии поднялся в воздух бомбардировщик Б-52. Когда он достиг высоты 12 км, с него стартовал Х-43А. На высоте 29 км он отделился от ракеты-носителя. В этот момент запустился его собственный ПВРД. Он проработал всего 10 секунд, но смог развить гиперзвуковую скорость в 7 М.

В данный момент Х-43А является самым быстрым самолётом в мире. Он способен развивать скорость до 11230 км/час и может подниматься на высоту до 50 км. Но это всё-таки беспилотный летательный аппарат. Но недалёк тот час, когда появятся гиперзвуковые самолёты, на которых смогут летать и обычные пассажиры.

Общие сведения

Полет на гиперзвуковой скорости является частью сверхзвукового режима полета и осуществляется в сверхзвуковом потоке газа. Сверхзвуковой поток воздуха коренным образом отличается от дозвукового и динамика полета самолета при скоростях выше скорости звука (выше 1,2 М) кардинально отличается от дозвукового полета (до 0,75 М, диапазон скоростей от 0,75 до 1,2 М называется трансзвуковой скоростью).

Определение нижней границы гиперзвуковой скорости обычно связано с началом процессов ионизации и диссоциации молекул в пограничном слое (ПС) около аппарата, который движется в атмосфере, что начинает происходить примерно при 5 М. Также данная скорость характеризуется тем, что прямоточный воздушно-реактивный двигатель («ПВРД ») с дозвуковым сгоранием топлива («СПВРД ») становится бесполезным из-за чрезвычайно высокого трения, которое возникает при торможении проходящего воздуха в двигателе этого типа. Таким образом, в гиперзвуковом диапазоне скоростей для продолжения полета возможно использование только ракетного двигателя или гиперзвукового ПВРД (ГПВРД) со сверхзвуковым сгоранием топлива.

Характеристики потока

В то время как определение гиперзвукового потока (ГП) достаточно спорно по причине отсутствия четкой границы между сверхзвуковым и гиперзвуковым потоками, ГП может характеризоваться определенными физическими явлениями, которые уже не могут быть проигнорированы при рассмотрении, а именно:

Тонкий слой ударной волны

По мере увеличения скорости и соответствующих чисел Маха, плотность позади ударной волны (УВ) также увеличивается, что соответствует уменьшению объема сзади от УВ благодаря сохранению массы. Поэтому, слой ударной волны, то есть объем между аппаратом и УВ становится тонким при высоких числах Маха, создавая тонкий пограничный слой (ПС) вокруг аппарата.

Образование вязких ударных слоев

Часть большой кинетической энергии, заключенной в воздушном потоке, при М > 3 (вязкое течение) преобразуется во внутреннюю энергию за счет вязкого взаимодействия. Увеличение внутренней энергии реализуется в росте температуры . Так как градиент давления, направленный по нормали к потоку в пределах пограничного слоя, приблизительно равен нулю, существенное увеличение температуры при больших числах Маха приводит к уменьшению плотности. Таким образом, ПС на поверхности аппарата растет и при больших числах Маха сливается с тонким слоем ударной волны вблизи носовой части, образуя вязкий ударный слой.

Появление волн неустойчивости в ПС, не свойственных до- и сверхзвуковым потокам

Высокотемпературный поток

Высокоскоростной поток в лобовой точке аппарата (точке или области торможения) вызывает нагревание газа до очень высоких температур (до нескольких тысяч градусов). Высокие температуры, в свою очередь, создают неравновесные химические свойства потока, которые заключаются в диссоциации и рекомбинации молекул газа, ионизации атомов, химическим реакциям в потоке и с поверхностью аппарата. В этих условиях могут быть существенны процессы конвекции и радиационного теплообмена .

Параметры подобия

Параметры газовых потоков принято описывать набором критериев подобия , которые позволяют свести практически бесконечное число физических состояний в группы подобия и которые позволяют сравнивать газовые потоки с разными физическими параметрами (давление, температура, скорость и пр.) между собой. Именно на этом принципе основано проведение экспериментов в аэродинамических трубах и перенос результатов этих экспериментов на реальные летательные аппараты, несмотря на то, что в трубных экспериментах размер моделей, скорости потока, тепловые нагрузки и пр. могут сильно отличаться от режимов реального полёта, в то же время, параметры подобия (числа Маха, Рейнольдса, Стантона и пр.) соответствуют полётным.

Для транс- и сверхзвукового или сжимаемого потока, в большинстве случаев таких параметров как число Маха (отношение скорости потока к местной скорости звука) и Рейнольдса достаточно для полного описания потоков. Для гиперзвукового потока данных параметров часто бывает недостаточно. Во-первых, описывающие форму ударной волны уравнения становятся практически независимыми на скоростях от 10 М. Во-вторых, увеличенная температура гиперзвукового потока означает, что эффекты, относящиеся к неидеальным газам становятся заметными.

Учет эффектов в реальном газе означает бо́льшее количество переменных, которые требуются для полного описания состояния газа. Если стационарный газ полностью описывается тремя величинами: давлением , температурой, теплоёмкостью (адиабатическим индексом), а движущийся газ описывается четырьмя переменными, которая включает еще скорость , то горячий газ в химическом равновесии также требует уравнений состояния для составляющих его химических компонентов, а газ с процессами диссоциации и ионизации должен еще включать в себя время как одну из переменных своего состояния. В целом это означает, что в любое выбранное время для неравновесного потока требуется от 10 до 100 переменных для описания состояния газа. Вдобавок, разреженный гиперзвуковой поток (ГП), обычно описываемый в терминах чисел Кнудсена , не подчиняются уравнениям Навье-Стокса и требуют их модификации. ГП обычно категоризируется (или классифицируется) с использованием общей энергии, выраженной с использованием общей энтальпии (мДж /кг), полного давления (кПа) и температуры торможения потока (К) или скорости (км/с).

Идеальный газ

В данном случае, проходящий воздушный поток может рассматриваться как поток идеального газа. ГП в данном режиме все еще зависит от чисел Маха и моделирование руководствуется температурными инвариантами , а не адиабатической стенкой , что имеет место при ме́ньших скоростях. Нижняя граница этой области соответствует скоростям около 5 М, где СПВРД с дозвуковым сгоранием становятся неэффективными, и верхняя граница соответствует скоростям в районе 10-12 М.

Идеальный газ с двумя температурами

Является частью случая режима потока идеального газа с большими значениями скорости, в котором проходящий воздушный поток может рассматриваться химически идеальным, но вибрационная температура и вращательная температура газа должны рассматриваться отдельно, что приводит к двум отдельным температурным моделям. Это имеет особое значение при проектировании сверхзвуковых сопел , где вибрационное охлаждение из-за возбуждения молекул становится важным.

Диссоциированный газ

Режим доминирования лучевого переноса

На скоростях выше 12 км/с передача тепла аппарату начинает происходить в основном через лучевой перенос, который начинает доминировать над термодинамическим переносом вместе с ростом скорости. Моделирование газа в данном случае подразделяется на два случая:

  • оптически тонкий - в данном случае предполагается, что газ не перепоглощает излучение, которое приходит от других его частей или выбранных единиц объема;
  • оптически толстый - где учитывается поглощение излучения плазмой, которое потом переизлучается в том числе и на тело аппарата.

Моделирование оптически толстых газов является сложной задачей, так как из-за вычисления радиационного переноса в каждой точке потока объем вычислений растет экспоненциально вместе с ростом количества рассматриваемых точек.

Гиперзвуковая скорость это полёт со скоростью от ЧЕТЫРЁХ скоростей звука и более. Среди авиационных специалистов чаще всего используется название не «скорость звука», а «Мах». Это название произошло от фамилии австрийского учёного физика Эрнста Маха (Ernst Mach), который исследовал аэродинамические процессы, сопровождающие сверхзвуковое движение тел. Таким образом, 1Мах – это ОДНА скорость звука. Соответственно гиперзвуковая скорость – это ЧЕТЫРЕ Маха и более. В 1987-м году 7-го декабря в Вашингтоне главы государств СССР и США, Михаил Горбачёв и Рональд Рейган подписали договор о ликвидации ядерных ракет средней дальности «Пионер» и «Першинг-2». В результате этого события произошла остановка разработки советской стратегической крылатой ракеты «Х-90», которая обладала гиперзвуковой скоростью полёта. Создатели ракеты Х-90 получили разрешение провести только ОДИН испытательный полёт. Данное успешное испытание могло привести к грандиозному переоснащению советских ВВС летательными аппаратами с гиперзвуковой скоростью полёта, которые могли бы обеспечить превосходство в СССР воздухе.

В 1943-м году американская авиакомпания « Bell » приступила к созданию самолёта, который должен был преодолеть скорость звука. Пуля, выстреленная из винтовки, летит быстрее скорости звука, поэтому над формой фюзеляжа нового самолёта долго не думали. Его конструкция предполагала большой запас прочности. В некоторых местах обшивка превышала толщину ОДИН сантиметр. Пулька получилась тяжёлая. О самостоятельном взлёте не могло быть и речи. В небо новый самолёт поднимался с помощью бомбардировщика В-29. Американский самолёт, предназначенный для преодоления скорости звука, получил название «Х-1» (смотри статью «Неизвестные самолёты»). Форма фюзеляжа Х-1 могла бы подойти и для гиперзвуковой скорости полёта.

Гражданский лётчик-испытатель Чалмерс Гудлин поставил условие – премия за преодоление скорости звука 150 000 долларов! Тогда зарплата капитана ВВС США составляла 283 доллара в месяц. Молодой капитан в возрасте 24-х лет Чак Йегер, боевой офицер лётчик асс, сбивший 19 фашистских самолётов, 5 из них в одном бою, решил, что это ОН преодолеет скорость звука. Никто не знал, что во время полёта на преодоление скорости звука у него были сломаны два ребра, и плохо шевелилась правая рука. Это произошло в результате падения с лошади во время прогулки с женой накануне. Чак Йегер понимал, что это его крайний полёт перед больницей и промолчал, чтобы полёт НЕ отменили. Преодоление скорости звука станет первым этапом на пути продвижения к гиперзвуковой скорости полёта.

В 1947-м году 14-го октября во вторник с секретной авиабазы поднялся в небо американский стратегический бомбардировщик В-29 с прикреплённым к бомбовому отсеку самолётом. На высоте примерно 7 км от него отделился пилотируемый аппарат в то время необычной формы. Через несколько минут раздался оглушительный хлопок, как при выстреле из нескольких пушек одновременно, но это была НЕ катастрофа. В этот день американский лётчик-испытатель Чарльз Элвуд Йегер, более известный как Чак Йегер (Chuck Yeager) или Чак Игер, впервые в истории человечества преодолел СКОРОСТЬ ЗВУКА на ЭКСПЕРИМЕНТАЛЬНОМ самолёте Х-1. Сверхзвуковой самолёт Х-1 обладал максимальной скоростью полёта – 1 556 км/ч и это с прямым крылом, практический потолок Х-1 – 13 115 метров, максимальная тяга двигателя – 2 500 кгс. Приземлялся Х-1 сам, в планирующем режиме. Позже на этой же авиабазе, более известной как «Зона-51», расположенной на дне высохшего солёного озера Грум (Groom), на юге штата Невада проводились испытания аппаратов с гиперзвуковой скоростью полёта.

После принятия в США доктрины ядерной войны количество стратегических бомбардировщиков в США увеличилось в четыре раза. Защищать бомбардировщики должны были тысячи реактивных истребителей F -80 и F -82. Через один год после Чака Йегера скорость звука преодолел и советский лётчик-испытатель Иван Евграфович Фёдоров на истребителе «Ла-176».

Первая советская КРЫЛАТАЯ ракета «Буря» на стартовой площадке во время старта

Стреловидность крыла Ла-176 составляла 45 градусов, максимальная тяга двигателя — 2 700 кгс, практический потолок – 15 000 м, максимальная скорость — 1 105 км/ч. В тот момент пределом для пилотируемой авиации казались 2-3 скорости звука. Но на секретном полигоне СССР уже тогда проходила испытания техника, обладающая гиперзвуковой скоростью полёта. Это была ракета «Р-1» с максимальной скоростью полёта 1 465 м/с и дальностью полёта 270 км. И спытания Р-1 проводились на полигоне «Капустин яр» в Астраханской области. Будущим летательным аппаратам, двигающимся с гиперзвуковой скоростью, требовались не только новые двигатели и новые материалы, но и новое топливо. Секретным топливом для баллистической ракеты Р-1 служил этиловый спирт высшей категории очистки.

Первая советская КРЫЛАТАЯ ракета «Буря» в полёте

БАЛЛИСТИЧЕСКАЯ ракета Р-1 разрабатывалась под руководством Сергея Павловича Королёва. Справедливости ради скажем, что в разработке Р-1 также принимали активное участие часть немецких ракетных специалистов, которые переехали в СССР после Второй Мировой войны. Ракета Р-1 стала отправной точкой в разработке МЕЖКОНТИНЕНТАЛЬНЫХ баллистических ракет, которые обладали гиперзвуковой скоростью и должны были быть абсолютно НЕУЯЗВИМЫМИ средствами доставки ядерного оружия. Первый Искусственный Спутник Земли и первый полёт человека в космос получились уже вследствие появления межконтинентальных баллистических ракет.

Американский космический корабль многоразового использования «Спэйс-Шатл» во время движения на стартовый комплекс

Первый успешный пуск советской баллистической ракеты Р-1 был осуществлён 10-го октября 1948-го года. Для достижения военного равновесия с США требовались ракеты с дальностью полёта НЕ сотни, а тысячи километров. Испытания ракет Королёва шли успешно, и каждая последующая модель приобретала всё большую гиперзвуковую скорость полёта и всё большую дальность полёта. На повестку дня вышел вопрос о замене ракетного топлива. Этиловый спирт в качестве топлива перестал подходить из-за своей недостаточной скорости горения и из-за своей недостаточной теплоёмкости, то есть количества энергии. Дело в том, что для того чтобы летать на гиперзвуковых скоростях в качестве топлива подходит только ВОДОРОД. Ни на каком другом химическом элементе так быстро летать нельзя! Водород обладает большой скоростью горения и большой теплоёмкостью, то есть высокой температурой горения, имея при этом минимально возможный объём водородного топлива. Соответственно при применении ВОДОРОДА получается максимальная тяга двигателя. Кроме всего этого ВОДОРОДНОЕ топливо является АБСОЛЮТНО ЭКОЛОГИЧЕСКИ ЧИСТЫМ топливом!!! С.П.Королёв считал, что именно это топливо позволит решить проблему передвижения в околоземном пространстве на гиперзвуковых скоростях полёта.

Американский космический корабль многоразового использования «Спэйс-Шатл» во время работы на орбите

Однако существовал ещё один вариант решения космических скоростей. Его предложили известные академики Михаил Кузьмич Янгель и Владимир Николаевич Челомей. Это была жидкость с аммиачным запахом и в отличие от водорода была простой и очень недорогой в производстве. Но когда Королёв узнал, что это такое, он пришёл в УЖАС! Это прекрасное ракетное топливо называлось ГЕПТИЛ. Он оказался в ШЕСТЬ РАЗ ЯДОВИТЕЕ СИНИЛЬНОЙ КИСЛОТЫ и по степени опасности соответствовал БОЕВЫМ отравляющим веществам «ЗАРИН» и «ФОСГЕН»! Однако правительство СССР решило, что ракетное оружие важнее возможных последствий и что оно должно быть создано любой ценой. Впоследствии на топливе гептиле летали ракеты Янгеля и Челомея.

В 1954-м году советская разведка получила секретное сообщение от резидента в США, благодаря которому и в СССР начались работы по созданию авиации с гиперзвуковой скоростью полёта. В США этот проект получил название «Наваху». Через два месяца после секретного сообщения вышло постановление советского правительства о начале создания стратегической КРЫЛАТОЙ ракеты. В СССР разработку такой ракеты поручили КБ С.А.Лавочкина (смотри статью «Семён Алексеевич Лавочкин»). Проект получил название «Буря». Всего через ТРИ года «Буря» начала проходить испытания на полигоне «Капустин яр»!!! Компоновка «Бури» соответствовала современному американскому многоразовому космическому кораблю «Спэйс Шатл». На момент испытаний «Бури» стало известно, что американский проект «Наваху» ЗАКРЫЛИ. Это произошло, скорее всего, из-за того, что американские конструкторы в тот момент не смогли создать необходимые двигатели.

«Буря» была рассчитана не на гиперзвуковую скорость полёта, а на чуть меньшую скорость, на ТРИ с ПОЛОВИНОЙ скорости звука. Это было обусловлено тем, что на тот момент ещё не создали материалы, которые выдерживали бы НАГРЕВ ОБШИВКИ соответствующий гиперзвуковой скорости. Также и бортовые приборы должны были сохранять работоспособность при большой температуре нагрева. При создании «Бури» ещё только начали разрабатывать материалы выдерживающие данные температурные условия нагрева.

На момент ТРЁХ удачных пусков крылатой ракеты «Бури», обладающей ДО гиперзвуковой скоростью, ракеты Королёва, «Р-7», уже вывели на околоземную орбиту первый искусственный спутник Земли и первое живое существо – дворняжку по кличке «Лайка». В это время руководитель СССР Н.С.Хрущёв в интервью для Западной прессы во всеуслышанье заявил, что на ракету Р-7 можно установить ЯДЕРНЫЙ заряд и поразить ЛЮБУЮ ЦЕЛЬ на территории США. С этого момента ОСНОВОЙ ракетно-космической обороны СССР стали межконтинентальные баллистические ракеты. Крылатая ракета «Буря» делалась для выполнения этой же самой задачи, но тогдашнее правительство СССР посчитало, что тащить обе эти программы, одновременно, будет слишком накладно и «Бурю» ЗАКРЫЛИ???

В конце 1950-х и все 1960-е года и в США и в СССР проводились эксперименты по созданию перспективной авиационной техники, обладающей гиперзвуковой скоростью полёта. Но в плотных слоях атмосферы летательные аппараты слишком перегревались, а в некоторых местах даже плавились, поэтому достижение гиперзвуковой скорости в АТМОСФЕРЕ вновь и вновь откладывалось на неизвестное время. В США существует программа создания экспериментальных самолётов под названием «Х», с помощью которых исследуется полёт на гиперзвуковых скоростях. Американские военные возлагали большие надежды на экспериментальный самолёт «Х-31», но 15-го ноября 1967-го года через 10 секунд полёта на гиперзвуковой скорости Х-31 взорвался. После этого программа экспериментальных самолётов «Х» была приостановлена, но только на некоторое время. Так в середине 1970-х годов на американском экспериментальном самолёте «Х-15» на высоте около 100 км была достигнута гиперзвуковая скорость полёта, равная 11-ти скоростям звука (3,7 км/сек)!!!

В середине 1960-х годов и США и СССР независимо друг от друга и одновременно приступили к созданию уже серийных самолётов летающих с крейсерской скоростью ТРИ Маха! Полёт с ТРЕМЯ скоростями звука в АТМОСФЕРЕ очень сложная задача! В результате КБ Келли Джонсона на фирме «Локхид» и КБ А.И.Микояна на МиГе (смотри статью «Артём Иванович Микоян») создали два шедевра авиационной техники. Американцы — стратегический разведчик « SR -71″ Blackbird (смотри статью « SR -71»). Русские лучший в мире истребитель-перехватчик «МиГ-25» (смотри статью «МиГ-25»). Снаружи SR-71 имеет чёрный цвет НЕ из-за чёрной краски, а из-за ФЕРРИТОВОГО покрытия, которое очень эффективно отводит тепло. Позже SR -71 был доведён до гиперзвуковой скорости полёта 4 800 км/ч. МиГ-25 успешно использовался во время войны Израиля с Египтом в качестве высотного разведчика. Весь полёт на МиГ-25 над Израилем занимал ДВЕ МИНУТЫ!!! Израильские ПВО утверждают, что МиГ-25 обладает ТРЕМЯ С ПОЛОВИНОЙ скоростями звука (4 410 км/ч или 1 225 м/с)!

Превосходство в воздухе может обеспечить и воздушно-космическая авиация. В результате работ по данной тематике появились космические корабли МНОГОРАЗОВОГО использования американский «Спейс-Шатл» и советский «Буран» (смотри статью «Буран космический корабль»). При посадке на землю космические корабли многоразового использования входят в атмосферу с Первой Космической скоростью, 7,9 км/сек это в 23,9 раза больше скорости звука. Для защиты от перегрева при входе в атмосферу, многоразовые космические корабли снаружи покрывают специальной КЕРАМИЧЕСКОЙ плиткой. Понятно, что даже при НЕ очень большом нарушении этого керамического покрытия на гиперзвуковой скорости произойдёт катастрофа.

После бесплодных поисков универсальных средств защиты от перегрева борьба за первенство в воздухе переместилась на другую — сверхнизкую высоту. КРЫЛАТЫЕ ракеты перешли на высоту полёта около 50-ти метров, на, ДО гиперзвуковые скорости полёта, около 850 км/ч с технологией ОГИБАНИЯ РЕЛЬЕФА местности. Американская крылатая ракета получила название «Томагавк» (Tomahawk), а советский аналог «Х-55». Обнаружение крылатой ракеты радаром затруднено потому, что сама ракета благодаря новейшей системе самонаведения имеет небольшие размеры и соответственно малую отражающую площадь. Также поражение крылатой ракеты затруднено по причине активного, непредсказуемого маневрирования во время полёта. Создание советской крылатой ракеты Х-55 было поручено КБ «Радуга», руководителем которого являлся Игорь Сергеевич Селезнёв.

Однако расчёты показали, что почти полную неуязвимость крылатой ракеты может обеспечить только гиперзвуковая скорость полёта в пять-шесть раз больше скорости звука (5-6 Махов), что соответствует, скорости примерно два км/сек. На первых же испытаниях новой техники конструкторы опять столкнулись с той же проблемой температурного перегрева. При достижении заданной гиперзвуковой скорости полёта поверхность ракеты нагревалась почти до 1 000 градусов Цельсия и первыми выходили из строя антенны управления. Тогда Игорь Селезнёв отправился в Ленинград на предприятие «Ленинец», где изготавливали бортовую радиоэлектронику. Специалисты дали НЕ утешительное заключение. Сделать управляемую ракету, летящую на гиперзвуковой скорости в плотных слоях атмосферы невозможно.

Но один из сотрудников НИИ, а именно предложил оригинальную идею. Почему бы керосин, находящийся на борту крылатой ракеты в качестве топлива не использовать ещё и в качестве ОХЛАДИТЕЛЯ головки самонаведения. Были проведены эксперименты по созданию системы охлаждения с помощью бортового топлива, керосина. В ходе работ Фрайнштадт пришёл к выводу, что керосин НЕ обладает достаточным количеством энергии для полёта на гиперзвуковой скорости и что необходимым топливом для гиперзвуковой скорости является ВОДОРОД. Но Фрайнштадт предложил получать водород из керосина прямо на борту ракеты. Концепция такого двигателя получила название «Аякс».

Советский космический корабль многоразового использования «Буран» Хорошо видно теплоизоляционное покрытие корабля состоящее из специальных КЕРАМИЧЕСКИХ плиток

В то время эта идея показалась слишком фантастичной. В результате на вооружение была принята крылатая ракета с дозвуковой скоростью полёта Х-55. Но даже такая ракета стала выдающимся научно-техническим достижением. Краткие технические характеристики крылатой ракеты Х-55: длина — 5,88 м; диаметр корпуса — 0,514 м; размах крыльев — 3,1 м; стартовый вес — 1195 кг; дальность полёта — 2 500 км; скорость полёта — 770 км/ч (214 м/с); высота полёта от 40 до 110 м; масса боевой части — 410 кг; мощность боевой части — 200 кт; точность попадания до 100 м. В 1983-м году после принятия на вооружение крылатой ракеты Х-55 в Министерстве Обороны был поставлен вопрос о свёртывании работ по созданию двигателя обеспечивающего гиперзвуковую скорость полёта. Но именно в этом году тема гиперзвуковых летательных аппаратов стала всё чаще мелькать в донесениях советской разведки.

Советский космический корабль многоразового использования «Буран» на орбите

В рамках программы «Звёздные войны» американское правительство начало финансирование разработки аппаратов одинаково успешно летающих и в атмосфере и в космосе. Принципиально новым воздушно-космическим оружием должны были стать аппараты с гиперзвуковой скоростью полёта. После успешного создания Х-55, Игорь Селезнёв, не дожидаясь создания действующей модели аппарата «Аякс», приступил к разработке крылатой ракеты, летающей с гиперзвуковой скоростью. Такой ракетой стала крылатая ракета «Х-90», которая должна была летать на традиционном керосине со скоростью более 5-ти Махов. КБ Селезнёва удалось решить проблему температурного перегрева. Предполагалось, что Х-90 будет стартовать из СТРАТОСФЕРЫ. Благодаря этому температура нагрева корпуса ракеты сводилась к минимуму. Однако была и ещё одна причина принятия такой высоты пуска ракеты. Дело в том, что к этому моменту времени более, менее научились сбивать баллистические ракеты, научились сбивать самолёты и научились сбивать крылатые ракеты, летящие на сверхмалых высотах с дозвуковой скоростью полёта. Остался нетронутым только один слой стратосферы – это слой между атмосферой и космосом. Возникла идея «прошмыгнуть» незамеченным именно в области стратосферы, используя гиперзвуковую скорость.

Американская крылатая ракета «Томагавк» Запуск с корабельной установки

Однако после первого успешного пуска Х-90 все работы по этой ракете были прекращены??? Это произошло благодаря распоряжению нового руководителя СССР, М.С.Горбачёва. В это время в Ленинграде, Владимир Фрайнштадт организовал группу учёных энтузиастов для создания гиперзвукового двигателя «Аякс». Эта группа Фрайнштадта не просто создавала агрегат по переработке керосина в водород, но и училась управлять возникающей во время полёта на гиперзвуковой скорости, разрушительной ПЛАЗМОЙ вокруг аппарата. Это намечало технологический прорыв всей пилотируемой авиации! Группа Фрайнштадта приступила к подготовке первого полёта гиперзвуковой модели. Однако в 1992-м году проект «Аякс» ЗАКРЫЛИ из-за прекращения финансирования??? В 1980-х годах, в СССР разработки летательных аппаратов летающих с гиперзвуковыми скоростями находились на передовых позициях в мире!!! Этот задел был потерян уже только в 1990-х годах.

Американская крылатая ракета «Томагавк» непосредственно перед попаданием в цель

ЭФФЕКТИВНОСТЬ и ОПАСНОСТЬ боевых летательных аппаратов летающих с гиперзвуковыми скоростями была ОЧЕВИДНА уже тогда, в 1980-х годах. В 1998-м году в начале августа в непосредственной близости от американских посольств в Кении и Танзании прогремели мощные взрывы. Эти взрывы устроила мировая террористическая организация «Алькаида», руководителем которой являлся, Усама Бен Ладен. В этом же году 20-го августа американские корабли, находившиеся в Аравийском море, произвели боевой пуск восьми крылатых ракет «Томагавк». Через два часа ракеты попали в территорию лагеря террористов, расположенную в Афганистане. Далее в секретном донесении президенту США, Б. Клинтону агенты сообщили, что главная цель ракетного удара по базе «Алькаиды» в Афганистане НЕ достигнута. Через полчаса после СТАРТА ракет Бен Ладен о летящих на него ракетах был ПРЕДУПРЕЖДЁН по спутниковой связи и покинул базу примерно за один час до взрывов. Из этого результата американцы сделали вывод такой, что данную боевую задачу могли бы выполнить ракеты только с гиперзвуковой скоростью полёта.

Через несколько дней управление перспективных разработок Министерства Обороны США подписало долгосрочный договор с фирмой «Боинг». Авиационная фирма получила много миллиардный заказ на создание универсальной крылатой ракеты обладающей гиперзвуковой скоростью полёта, ШЕСТЬ Махов. Заказ стал масштабным проектом, который позволит США создать перспективные системы вооружения и авиации. В дальнейшем гиперзвуковые аппараты в процессе своего развития могут превратиться в аппараты МЕЖСРЕДНЫЕ, которые смогут многократно переходить из атмосферы в космос и обратно, при этом активно маневрируя. Такие аппараты благодаря своей нестандартной и непредсказуемой траектории полёта могут представлять очень большую опасность.

В июле 2001-го года в США был осуществлён запуск экспериментального самолёта «Х-43А». Он должен был достичь гиперзвуковой скорости полёта, СЕМЬ Махов. Но аппарат потерпел крушение. Вообще создание техники с гиперзвуковой скоростью полёта по ТРУДНОСТИ сравнимо с созданием атомного оружия. Новейшие американские гиперзвуковые крылатые ракеты предположительно будут летать на высотах стратосферы. В последнее время гонка по созданию гиперзвукового аппарата началась снова. Двигатель новой гиперзвуковой ракеты может стать плазменным, то есть температура горючей смеси, используемая в двигателе, станет равной горячей ПЛАЗМЕ. Предсказать время появления аппаратов с гиперзвуковой скоростью полёта в России, из-за недостаточного финансирования пока невозможно.

Предположительно в 2060-х годах в мире начнётся массовый переход пассажирской авиации, летающей на расстояния свыше 7 000 км, на гиперзвуковые скорости полёта при высотах полёта от 40 до 60 км. В 2003-м году американцы профинансировали свои исследования для своих будущих разработок пассажирских самолётов с гиперзвуковой скоростью полёта на советском сверхзвуковом пассажирском самолёте «Ту-144» (смотри статьи «Ту-144» и «Алексей Андреевич Туполев»). В своё время Ту-144 был изготовлен в количестве 19-ти штук. В 2003-м году один из трёх оставшихся в наличии Ту-144 отремонтировали и превратили в летающую лабораторию в РОССИЙСКО-АМЕРИКАНСКОЙ программе по отработке систем самолётов нового поколения. Американцы были в восторге от советского Ту-144!!!

Первые идеи ракетопланов – гиперзвуковых самолётов, летящих со скоростью 10-15 Махов, появились ещё в 1930-е годы. Однако тогда даже самые дальновидные конструкторы мало представляли, с какими трудностями придётся столкнуться идее, ДОЛЕТЕТЬ ДО ЛЮБОЙ ТОЧКИ НАШЕЙ ПЛАНЕТЫ ЗА ПОЛТОРА ЧАСА!!! На гиперзвуковых скоростях полёта в атмосфере кромки крыльев, воздухозаборников и других частей самолёта нагреваются до температуры плавления алюминиевых сплавов. Поэтому создание будущей гиперзвуковой авиации, целиком и полностью связано с химией, металлургией и разработкой новых материалов.

Обычные реактивные двигатели на скорости ТРИ Маха становятся уже НЕ эффективными (смотри статью «Новинки авиации»). При дальнейшем увеличении скорости необходимо предоставить возможность самому НАБЕГАЮЩЕМУ ПОТОКУ воздуха выполнять, роль компрессора, сжимающего воздух. Для этого достаточно, ВХОДНУЮ ЧАСТЬ двигателя сделать СУЖАЮЩЕЙСЯ. При гиперзвуковой скорости полёта степень сжатия набегающего потока воздуха такова, что его температура становится 1 500 градусов. Двигатель превращается в так называемый ПРЯМОТОЧНЫЙ двигатель, вообще без вращающихся частей. Но при этом он действительно работает!

В своё время советский учёный Владимир Георгиевич Фрайнштадт занимался проблемами охлаждения керосином, летящих из космоса ядерных боеголовок. Теперь конструкторы всего мира, благодаря его исследованиям, используют эффект скачкообразного повышения энергии сгорания перегретого керосина за счёт использования, выделяющегося при таких высоких температурах ВОДОРОДА. Этот эффект даёт очень большую мощность двигателю, который обеспечивает гиперзвуковую скорость полёта. В 2004-м году американцы дважды устанавливали рекорды скорости беспилотных ракетопланов. Х-43А отцеплялся от реактивного бомбардировщика «В-52» на высоте 12 000 метров. Ракета «Пегас» разгоняла его до скорости ТРИ Маха, а затем Х-43А запускал свой двигатель. Максимальная скорость полёта Х-43А составляла 11 265 км/ч (3 130 м/с), что соответствует 9,5 скоростям звука. Полёт на максимальной скорости занимал 10 секунд на высоте 35 000 метров. На скорости 9,5 Махов полёт из Москвы в Нью-Йорк занял бы чуть меньше 43-х минут!!! Американские учёные продолжают двигать авиационную науку!!!